Math Problem Statement

(1 point) Consider the equation βˆ’π‘’π‘¦sin(π‘₯)=π‘₯π‘¦βˆ’5𝑦 . Find 𝑑𝑦𝑑π‘₯ .

𝑑𝑦𝑑π‘₯=

Solution

We are given the equation:

βˆ’eysin⁑(x)=xyβˆ’5y- e^y \sin(x) = xy - 5y

Our goal is to find dydx\frac{dy}{dx}. Since yy is a function of xx, we will differentiate both sides of the equation with respect to xx, applying implicit differentiation.

Step 1: Differentiate the left-hand side

ddx(βˆ’eysin⁑(x))\frac{d}{dx}\left( - e^y \sin(x) \right)

This is a product of two functions, so we apply the product rule:

ddx(βˆ’eysin⁑(x))=βˆ’(eyddx(sin⁑(x))+sin⁑(x)ddx(ey))\frac{d}{dx}\left( - e^y \sin(x) \right) = - \left( e^y \frac{d}{dx}(\sin(x)) + \sin(x) \frac{d}{dx}(e^y) \right)

=βˆ’(eycos⁑(x)+sin⁑(x)β‹…eydydx)= - \left( e^y \cos(x) + \sin(x) \cdot e^y \frac{dy}{dx} \right)

Thus, the derivative of the left-hand side is:

βˆ’eycos⁑(x)βˆ’eysin⁑(x)dydx- e^y \cos(x) - e^y \sin(x) \frac{dy}{dx}

Step 2: Differentiate the right-hand side

ddx(xyβˆ’5y)\frac{d}{dx}(xy - 5y)

This involves differentiating two terms:

  1. ddx(xy)\frac{d}{dx}(xy) using the product rule: ddx(xy)=y+xdydx\frac{d}{dx}(xy) = y + x \frac{dy}{dx}

  2. ddx(βˆ’5y)\frac{d}{dx}(-5y): ddx(βˆ’5y)=βˆ’5dydx\frac{d}{dx}(-5y) = -5 \frac{dy}{dx}

So, the derivative of the right-hand side is:

y+xdydxβˆ’5dydxy + x \frac{dy}{dx} - 5 \frac{dy}{dx}

Step 3: Combine both sides

Now we combine the derivatives of both sides:

βˆ’eycos⁑(x)βˆ’eysin⁑(x)dydx=y+xdydxβˆ’5dydx- e^y \cos(x) - e^y \sin(x) \frac{dy}{dx} = y + x \frac{dy}{dx} - 5 \frac{dy}{dx}

Step 4: Solve for dydx\frac{dy}{dx}

Collect all terms involving dydx\frac{dy}{dx} on one side:

βˆ’eysin⁑(x)dydxβˆ’xdydx+5dydx=y+eycos⁑(x)- e^y \sin(x) \frac{dy}{dx} - x \frac{dy}{dx} + 5 \frac{dy}{dx} = y + e^y \cos(x)

Factor out dydx\frac{dy}{dx}:

dydx(βˆ’eysin⁑(x)βˆ’x+5)=y+eycos⁑(x)\frac{dy}{dx} \left( - e^y \sin(x) - x + 5 \right) = y + e^y \cos(x)

Finally, solve for dydx\frac{dy}{dx}:

dydx=y+eycos⁑(x)βˆ’eysin⁑(x)βˆ’x+5\frac{dy}{dx} = \frac{y + e^y \cos(x)}{- e^y \sin(x) - x + 5}

This is the derivative dydx\frac{dy}{dx}.


Would you like more details on any part of the process?

Related Questions:

  1. What is the product rule in differentiation?
  2. How do we handle implicit differentiation in multivariable contexts?
  3. Can we simplify the derivative further under specific conditions for xx and yy?
  4. What are the conditions where the denominator might be zero in this derivative?
  5. How would the derivative change if we had a different trigonometric function?

Tip: Always group terms involving the derivative when using implicit differentiation to make solving for dydx\frac{dy}{dx} easier.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Implicit Differentiation
Product Rule
Trigonometric Functions

Formulas

Product Rule: d(uv)/dx = u'v + uv'
Implicit Differentiation: d/dx[f(y)] = f'(y) dy/dx

Theorems

Product Rule in Differentiation
Chain Rule

Suitable Grade Level

Grades 11-12, Calculus Level